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These notes cover the first and third lecture in a class field theory graduate summer mini-course
co-taught at UT Austin in Summer 2019 by Rok Gregoric and Zachary Gardner. The first lecture
is a review of necessary number theory background and the third lecture is an introduction to local
class field theory. The third lecture is dependent on the second lecture covering cohomological
preliminaries and assumes the reader is familiar with the basics of Tate cohomology. Some famil-
iarity with profinite groups would also be helpful. For the reader who is not so familiar, we highly
recommend Andrew Sutherland’s expository papers on Tate cohomology and Tate’s theorem. As
a final note, all rings are taken to be commutative and unital unless otherwise stated.

Lecture 1 - Number Theory Background

Introduction

Definition. A number field is a field which is a finite dimensional Q-vector space. A global
function field is a field which is a finite dimensional Fp(t)-vector space, for p a prime and t an
indeterminant. A global field is either a number field or global function field.

Global fields will, unsurprisingly, be the main item of focus for global class field theory. A
general rule of thumb is that if a result holds for one type of global field then an analogous result
holds for the other type. This is why number fields and global function fields are placed under the
same umbrella term. Note that things are often easier to prove for global function fields than for
number fields. Before we get into the number theory proper, we will give a lightning tour of the
algebraic results we need.

Some Field and Galois Theory

Definition. Let L/K be an extension of fields. Then, L/K is:

• algebraic if every α ∈ L is algebraic over K – i.e., α is a root of some nonzero polynomial
with coefficients in K;

• separable if every α ∈ L is separable over K – i.e., the minimal polynomial of α over K
has no repeated roots;

• normal if every irreducible polynomial with coefficients in K either has no roots in L or
splits completely in L;

• Galois if it is algebraic, separable, and normal;
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• abelian if it is Galois and Gal(L/K) is abelian;

• cyclic if it is Galois and Gal(L/K) is cyclic.

For L/K Galois, we let Gal(L/K) denote the group of K-linear automorphisms of L fixing K
pointwise. This group has order [L : K]. We say L/K is G-Galois if L/K is Galois with
Gal(L/K) ∼= G.

We record the following useful results for future (though possibly not explicit) reference. Know
that these results are lurking in the proofs of various results that will go unproved in these notes.

Theorem (Primitive Element Theorem). Let L/K be a finite separable extension. Then, there
exists α ∈ L such that L = K(α).

Theorem (Normal Basis Theorem). Let L/K be a finite G-Galois extension. Then, there exists
α ∈ L such that {σα : σ ∈ G} is a K-basis for L. Equivalently, L ∼= K[G] as G-modules.1

Theorem (Fundamental Theorem of Galois Theory). Let L/K be a (possibly infinite) G-Galois
extension of fields and endow G with the profinite topology arising from the natural isomorphism

G ∼= lim←−Gal(E/K),

where the inverse limit is taken over K ⊆ E ⊆ L with E/K finite Galois. Then, the maps H 7→ LH

and E 7→ Gal(L/E) induce an inclusion-reversing bijection between the set of closed subgroups of
G and fields intermediate between K and L. Moreover,

(i) H ≤ G =⇒ L/LH is Galois with Gal(L/LH) ∼= H, the closure of H in G;

(ii) open subgroups of G correspond to finite extensions of K (and, more generally, cosets corre-
spond to embeddings);

(iii) normal subgroups of G correspond to Galois extensions of K (and, more generally, conjugates
correspond to conjugates).

Given a field K, let K denote a choice of algebraic closure and Ksep a choice of separable
closure. For L/K a separable extension contained in Ksep, the Galois closure of L/K is the
minimal field M contained in Ksep such that L ⊆ M and M/K is Galois. Such an M exists and
is a finite extension of L. Unless otherwise stated, separable extensions of K will be taken to be
sub-extensions of some Ksep (this helps clarify any matters of uniqueness).

Proposition. Let K be a field and L1, L2 Galois over K. Then, the compositum L1L2 is Galois
over K satisfying

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

with image {(σ, τ) : σ|L1∩L2 = τ |L1∩L2}. Hence, if L1, L2 are abelian over K then L1L2 is as well.

1Given a ring R and group G, we use the notation R[G] to denote the group ring of R-linear formal sums of
elements of G.
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This allows us to define a maximal abelian extension Kab of K relative to some separable
closure Ksep as a suitable compositum. We define

Gal(K) := Gal(Ksep/K),

Galab(K) := Gal(Kab/K).

The former is the absolute Galois group of K and is in some sense the prime object of study
for modern number theory.

Remark. Galab(K) is sometimes referred to as the abelianized absolute Galois group of K even
though Galab(K) and Gal(K)ab are not literally isomorphic. They are, however, isomorphic in
the “profinite” sense of having the same finite quotients. If K is nonarchimedean local then this
relationship can be strengthened somewhat by a result of local class field theory known as the Norm
Limitation Theorem.

We say K is perfect if every finite extension of K is separable. If K is finite or charK = 0
then K is perfect. For charK = p > 0, K is perfect if and only if every element of K is a pth
power. Recall that if `/k is an extension of finite fields then `/k is cyclic with Gal(`/k) generated
by the Frobenius map σ : α 7→ α|k|. This will be important later when we discuss unramified
extensions.

Definition. Let L/K be a finite field extension (and so L is a K-vector space of finite dimension).
Define NL/K : L→ L by a 7→ detµα, where µα : L→ L is the K-linear map given by multiplication
by α.

Proposition. Let L/K be a finite field extension. Then,

(i) the image of NL/K is contained in K;

(ii) if α ∈ K then NL/K(α) = α[L:K];

(iii) NL/K defines a group homomorphism L× → K× and hence NL/K(L×) ≤ K×;

(iv) given K ⊆ E ⊆ L, NL/K = NE/K ◦NL/E;

(v) if L/K is Galois and α ∈ L then NL/K(α) =
∏
σ∈Gal(L/K) σα;2

(vi) if L/K is separable and M is the Galois closure of L/K then NL/K = NM/K |L.

Some Commutative Algebra

Let A ⊆ B be an extension of rings. The integral closure of A in B is

{b ∈ B : p(b) = 0 for some monic p(x) ∈ A[x]},

whose elements are said to be integral (over A). The integral closure of A in B is a ring, a
somewhat nontrivial statement which follows from the fact that b ∈ B is integral over A if and
only if the subring A[b] ⊆ B generated by b is a finitely generated A-module.

2There are similar product expressions for the norm in the case that L/K is not separable but we will not need
them.
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If A is an integral domain and no extension ring is specified then the integral closure of A
is taken to be the integral closure of A in the quotient field Frac(A). A is integrally closed if
it is equal to its own integral closure. A is a Dedekind domain if it is a Noetherian (i.e., every
ascending chain of ideals terminates), integrally closed integral domain of Krull dimension ≤ 1
(i.e., if A is not a field then every nonzero prime ideal is maximal). A is a discrete valuation
ring (DVR for short) if it is a local Dedekind domain which is not a field – i.e., a local PID of
Krull dimension 1. It follows that a Dedekind domain which is not a field is precisely a ring all of
whose localizations at prime ideals are DVRs.

Let A be an integral domain and K := Frac(A) its quotient field. A fractional ideal of A is
a nonzero A-submodule I of K such that αI ⊆ A for some nonzero α ∈ K (we may take α to lie
in A). If A is Noetherian then an A-submodule of K is a fractional ideal of A if and only if it is
finitely generated. Intersections, products, and sums of fractional ideals are defined as for ordinary
ideals of A. Given I a fractional ideal of A, define

I−1 := {α ∈ K : αI ⊆ A}.

This acts as an inverse for fractional ideal multiplication and makes the set of fractional ideals of
A into an abelian group. This group has a subgroup consisting of principal fractional ideals
– i.e., fractional ideals of the form αA for some nonzero α ∈ K. The quotient by this subgroup
yields the class group Cl(A) of A, which is another important object of study in number theory.

Proposition. Let A be a Dedekind domain. Then, every nonzero proper fractional ideal of A
factors uniquely (up to reordering) as a finite product of prime ideals of A.

Note that the statement is vacuously true if A is a field. Given p ∈ Spec(A) and I a nonzero
proper fractional ideal of A, define vp(I) to be the multiplicity of p in a prime ideal factorization
of I (this is well-defined by the above proposition). Letting K := Frac(A), this defines a map
vp : K → Z via vp(α) := vp(αA).

Given a number field K, define the ring of integers OK to be the integral closure of Z in K.
This is a Dedekind domain with quotient field K that is a finitely generated Z-module. Dirichlet’s
Unit Theorem tells us that O×K is a finitely generated abelian group. We define the class group
of K to be Cl(K) := Cl(OK). An important theorem of algebraic number theory asserts that this
is also a finitely generated abelian group.

Valuation Theory and Local Fields

Let K be a field. A discrete valuation on K is a map v : K → Z ∪ {∞} such that, for every
x, y ∈ K,

(i) v(x) =∞ ⇐⇒ x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x+ y) ≥ min{v(x), v(y)}.

An absolute value on K is a map |·| : K → R≥0 such that, for every x, y ∈ K,

(i) |x| = 0 ⇐⇒ x = 0;

(ii) |xy| = |x||y|;
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(iii) |x+ y| ≤ |x|+ |y|.

|·| is nonarchimedean if |x+ y| ≤ max{|x|, |y|} for every x, y ∈ K; it is archimedean otherwise.
|·| is trivial if |x| = 1 for every nonzero x ∈ K. For the sake of convenience we do not consider the
trivial absolute value to be nonarchimedean (though there are reasons in the global case to think
otherwise). Two absolute values |·|1 , |·|2 are said to be equivalent if there exists c > 0 such that
|·|2 = |·|c1. This defines an equivalence relation ∼ whose equivalence classes are called places of K.
If |·|1 , |·|2 are equivalent absolute values and |·|1 is nonarchimedean then |·|2 is also nonarchimedean.
A place represented by an archimedean absolute value is called an infinite place, while a place
represented by a nonarchimedean absolute value is called a finite place

A discrete valuation v induces a nonarchimedean absolute value |·|v := exp(−v(·)). Similarly,
a nonarchimedean absolute value |·| induces a discrete valuation w(·) := − log |·|. It follows that
nonarchimedean absolute values on K and discrete valuations on K are in bijection (this technically
may require excluding the trivial discrete valuation).

Remark. Discrete valuations are sometimes called additive valuations, while absolute values are
sometimes called multiplicative valuations. Condition (iii) for an absolute value is sometimes re-
placed with the condition that there exists a constant d > 0 such that |1 + x| ≤ d for every x ∈ K
such that |x| ≤ 1. This results in the same notion of absolute value for d = 2, and in the notion
of a nonarchimedean absolute value for d = 1. The difference is immaterial at the end of the day
since every absolute value of the second type is equivalent to an absolute value of the first type.

Note also that places are sometimes called primes. Given a Dedekind domain A with quotient
field K and p ∈ Spec(A), the map vp defined previously extends to a discrete valuation on K. By
the above comment, this induces a nonarchimedean absolute value |·|p and hence a place of K. So,
the prime p is essentially determining a place of K. The discrete valuation vp is normalized in
the sense that vp(π) = 1 for every π ∈ p \ p2. Some of the justification for classifying places as
finite or infinite comes from:

Theorem (Ostrowski). Let ω be a place of a number field K. If ω is finite then it is represented
by |·|p for some p ∈ Spec(OK). If ω is infinite then it is represented by |·|′ defined via |α|′ := |σα|
for |·| the standard absolute value on C and σ an embedding of K into C fixing Q pointwise (note
that there are [K : Q] such embeddings).

Proposition. Let K be a field and v a valuation on K. Define,

OK := {x ∈ K : v(x) ≥ 0},
pK := {x ∈ K : v(x) > 0}.

Then, OK is a local PID with (nonzero) maximal ideal pK . Moreover,

OK = {x ∈ K : |x| ≤ 1},
pK = {x ∈ K : |x| < 1}

for every |·| ∼ |·|v.

The field k := OK/pK is called the residue field of K, while OK is called the valuation
ring of K and is a prime example of a DVR. A generator π of pK is called a uniformizer of K.
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Note that v = vpK with regard to our prior notation. Given π a uniformizer of K, every α ∈ K×
can be written uniquely as uπn for u ∈ O×K and n ∈ Z. For such an α, v(α) = n. This yields a
non-canonical isomorphism K× ∼= O×K × Z arising from the short exact sequence

1 O×K K× Z 0v

Remark. Even though they share the same notation, don’t confuse the ring of integers of a field
K with the valuation ring of K since the two notions may not agree even if they both make sense.
For example, the integral closure of Z in Qp is not the same as Zp. To make matters even more
confusing, people sometimes refer to valuation rings as rings of integers.

Definition. A local field is a field K with an absolute value |·| such that the induced metric
topology makes K into a (non-discrete) locally compact topological field (in particular, K is a
Hausdorff space such that every point has a compact neighborhood).

Lemma. K is nonarchimedean local if and only if it is complete with respect to a discrete valuation
and has a ring of integers with finite residue field.

Let A be a Dedekind domain with p ∈ Spec(A) and quotient field K. Define Kp to be the
metric completion of K with respect to the metric induced by |·|p. Define Ap similarly. Then, Kp

is a local field with valuation ring Ap. Ap is a DVR with maximal ideal p̂ := pAp that is complete
with respect to the extension metric induced by |·|p̂. For a slightly more algebraic perspective, the
filtration

A ⊇ p ⊇ p2 ⊇ · · ·

gives rise to an inverse limit which we imbue with the (p-adic) Krull topology in which {pn}n≥0 is
a basis of 0. Then, there is a natural isomorphism Ap

∼= lim←−A/p
n of topological rings.

More generally, given a field K with absolute value |·|, we can consider the metric completion K̂.
This is a complete field with metric induced by the absolute value that is the unique extension of
|·| to K̂. Of course, K̂ also satisfies a universal property regarding embeddings of K into complete
valued fields (i.e., fields equipped with an absolute value). It follows that K̂ = K if K is already
complete and that completion is defined up to unique isomorphism at a place and not just an
absolute value.

Let A be a complete DVR with quotient field K and maximal ideal p. As above, A ∼= lim←−A/p
n.

A× admits a similar filtration
A× ⊇ 1 + p ⊇ 1 + p2 ⊇ · · ·

and Krull-type topology, giving a natural isomorphism A× ∼= lim←−A
×/(1+pn). For future reference,

A× is naturally a profinite group satisfying the no small subgroups condition – i.e., there is an open
neighborhood of 1 in A× that contains no nontrivial subgroups of G.3

Theorem. Let K be a local field. Then, K is isomorphic as a topological ring to one of the
following:

• charK = 0, |·| archimedean: R or C;

3Complete topological groups satisfying the no small subgroups condition are the natural object of study for a
result called Chevalley’s Theorem important in global class field theory.
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• charK = 0, |·| nonarchimedean: finite extension of Qp (for p > 0 prime);

• charK = p > 0, |·| nonarchimedean: Fq((t)) for q a power of p.

Corollary. Let A be a Dedekind domain such that K := Frac(A) is a global field. Then, given
p ∈ Spec(A), Kp is a local field. Conversely, every local field arises as the completion of a global
field.

Ramification Theory

The “AKLB setup” is the following: A is a Dedekind domain which is not a field, K = Frac(A),
L is a finite separable extension of K, and B is the integral closure of A in L. The AKLBG setup
is similar except that we additionally require that L/K is G-Galois.

Example. Take L/K a separable extension of either nonarchimedean local or number fields and
A = OK , B = OL. Note that such a field extension must necessarily be finite. That this is an
example of the AKLB setup follows from work done below.

Assume the AKLB setup. Then, B is a Dedekind domain with quotient field L. Let p ∈
Spec(A). q ∈ Spec(B) is said to lie above p if q∩K = p. There are only finitely many such primes,
given precisely by q ∈ Spec(B) such that q|pB.4 Let gp denote the number of such primes lying
above p. Fix now q ∈ Spec(B) lying above p. The ramification index eq of q is the multiplicity
of q in a prime ideal factorization of pB, while the inertia degree fq of q is [B/q : A/p]. We
sometimes use the notation eq/p and fq/p if we want to emphasize the role of p. Ramification index
and inertia degree behave well with respect to extensions. We obtain the following “combinatorial”
result.

Proposition. Assume the AKLB setup and let p ∈ Spec(A). Then, [L : K] =
∑

q|pB eqfq.

Definition. Assume the AKLB setup. Let q ∈ Spec(B) lying above p ∈ Spec(A). Then, L/K is:

• ramified at q if eq > 1;

• totally ramified at q if eq = [L : K] (i.e., the ramification index is maximal);

• unramified at q if eq = 1 and B/q is a separable extension of A/p.

We say L/K is unramified above p ∈ Spec(A) when it is unramified at every prime of B lying
above p. In such case, p is inert if pB is prime and splits completely or is split if gp = [L : K]
(i.e., it is maximal). L/K is unramified if it is unramified above every p ∈ Spec(A).

Proposition. Assume the AKLBG setup. G acts on the set of fractional ideals of B via σ(I) :=
{σ(x) : x ∈ I}. This restricts to an action of G on Spec(B), the fibers of which are precisely the
primes lying above some prime of A. In particular, G acts transitively on the set of primes lying
above a prime of A.

4People often use the notation q|p.
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Proposition. Assume the AKLBG setup and let p ∈ Spec(A). Then, the ramification index and
inertia degree are the same for every prime of B lying above p. We denote the common values by
ep and fp, respectively.

Corollary. Assume the AKLBG setup and let p ∈ Spec(A). Then, [L : K] = epfpgp.

Corollary. Assume the AKLBG setup and let q ∈ Spec(B). Then, vq is G-invariant in the sense
that vq(σα) = vq(α) for every σ ∈ G and α ∈ L.

One application of this result is the following.

Lemma. Let L/K be a finite separable extension of either nonarchimedean local or number fields.
Then, NL/K(OL) ⊆ OK .

Proof. In either case we have OK = OL ∩K. We already know NL/K(OL) ⊆ NL/K(L) ⊆ K, so it
suffices to show NL/K(OL) ⊆ OL. By passing to the Galois closure we may assume without loss
of generality that L/K is Galois. Suppose first that L,K are local fields. Let |·| be the relevant
absolute value on L. Then, OL = {α ∈ L : |α| ≤ 1}. Given α ∈ OL,

NL/K(α) =
∏

σ∈Gal(L/K)

σα =⇒ |NL/K(α)| =
∏

σ∈Gal(L/K)

|σα| = |α||Gal(L/K)| ≤ 1,

using that |·| is Gal(L/K)-invariant (this follows since |·| arises from a Gal(L/K)-invariant discrete
valuation). Suppose now that L,K are number fields. Given α ∈ OL, there exists a monic f ∈ Z[x]
such that f(α) = 0. Given σ ∈ Gal(L/K),

f(σα) = σ(f(α)) = σ(0) = 0 =⇒ σα ∈ OL.

Since NL/K(α) =
∏
σ∈Gal(L/K) σα and OL is a ring, NL/K(α) ∈ OL.

One consequence of the above is that NL/K(O×L ) ⊆ O×K . We will see later using group coho-

mology that NL/K(O×L ) = O×K for L/K a finite unramified extension of local fields.

Definition. Let L/K be a finite separable extension, v a discrete valuation on K, and w a discrete
valuation on L. Then, w extends v with index e > 0 if w|K = ev. The relevant shorthand is
w|v.

Proposition. Assume the AKLB setup and let p ∈ Spec(A). Then, given q ∈ Spec(B) lying above
p, vq extends vp with index eq. Moreover, q 7→ vq induces a bijection between primes lying above p
and discrete valuations on L extending vp.

It is often the case that, given A a complete DVR with residue field k, we wish to understand
A in terms of information about k. Hensel’s Lemma is a tool that lets us do just that. Note that
Hensel’s Lemma has many equivalent statements as well as a number of generalizations that all
bear the same name.
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Lemma (Hensel). Let A be a complete DVR with maximal ideal p and residue field k. Let F ∈ A[x]
and f ∈ k[x] its reduction mod p.

(a) Every simple root of f in k lifts to a simple root of F in A.

(b) Suppose that F is primitive (i.e., its coefficients generate A as an ideal) and g, h ∈ k[x] are
coprime such that f = gh. Then, there exist G,H ∈ A[x] such that F = GH, degG = deg g,
degH = deg h, and G,H reduce to g, h mod p.

Remark. The theory of filtered modules, filtered homomorphisms, and the associated graded pro-
vides tools that function analogously to Hensel’s Lemma. Some results can be proven in different
ways using both techniques, while other results only allow one technique. It is therefore useful to
understand how to apply both filtered stuff and Hensel’s Lemma.

Corollary. Assume the AKLB setup and that A is a complete DVR with maximal ideal p. Then,
there exists a unique prime q of B lying above p.

Theorem. Let A be a complete DVR with maximal ideal p and L/K a finite extension. Then,

|·| := |NL/K(·)|1/[L:K]
p is the unique absolute value on L extending |·|p and is complete. If in addition

L/K is separable then we have the AKLB setup with B the valuation ring of L with respect to |·|
and, moreover, |·| = |·|1/eqq for q the unique prime of B lying above p.

Remark. Similar extension results hold for global fields. Moreover, the extension results for local
and global fields are compatible under completion at the appropriate places.

Theorem. Let A be a complete DVR with quotient field K and residue field k. Let CK denote
the category whose objects are finite unramified extensions of K and morphisms are K-algebra
homomorphisms. Let Ck denote the category whose objects are finite separable extensions of k
and morphisms are k-algebra homomorphisms. Let F : CK → Ck be the functor which sends a
finite unramified extension L/K to its residue field ` and a morphism ϕ ∈ HomK−alg(L1, L2) to

ϕ ∈ Homk−alg(`1, `2) defined by α 7→ ϕ(α), where α is a lift of α to L1 and ϕ(α) is the projection
of ϕ(α) to `2. Then, F is a well-defined equivalence of categories.

The proof of the theorem yields an important characterization of unramified extensions.

Corollary. Assume the AKLB setup and let A be a complete DVR with quotient field K and
residue field k. Then, L/K is unramified if and only if B = A[α] for some α ∈ L whose minimal
polynomial in A[x] has separable image in k[x].

Corollary. Let A be a complete DVR with quotient field K and finite residue field k of size q.
Then, a finite extension L/K of degree n is unramified if and only if L ∼= K(ζqn−1) for ζqn−1 a
primitive (qn − 1)-root of unity.
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Corollary. Let A be a complete DVR with quotient field K and finite residue field k of size q.
Then, K has a unique (up to isomorphism) unramified extension of each finite degree. Moreover,
the compositum of unramified extensions of K is an unramified extension of K.

It follows that K has a maximal unramified extension Kunr obtained by adjoining suitable roots
of unity. Hence, Lunr = LKunr for L/K a finite separable extension.

Let L/K be a finite unramified extension of nonarchimedean local fields with finite residue
fields `/k. The theorem gives that both extensions are Galois and there is a natural isomorphism
ϕ : Gal(L/K)

∼−→ Gal(`/k). It follows that Gal(L/K) is cyclic with generator FrobL/K := ϕ−1(σ),
for σ the Frobenius element of Gal(`/k). More generally, let L/K be an extension contained inside
of Kunr. Then, FrobL/K is the unique element of Gal(L/K) such that

FrobL/K |E = FrobE/K

for every K ⊆ E ⊆ L with E/K finite (note that we have implicitly used that subgroups of cyclic
groups are cyclic with “compatible” generators). It follows that

Gal(Kunr/K) ∼= Gal(k/k) ∼= Ẑ = lim←−Z/nZ

and that there is a sequence of containments

K ⊆ Kunr ⊆ Kab ⊆ Ksep ⊆ K.

Lecture 3 - Local Class Field Theory

Introduction

For future reference, we define Galois cohomology to be H•(L/K) := H•(G,L×) for L/K a G-
Galois extension of fields. Under the same hypotheses, Hilbert’s Theorem 90 gives H1(L/K) = 0.
Our focus will be on proving the following theorem.

Theorem (Local Artin Reciprocity). Let K be a local field. Then, there exists a unique continuous
homomorphism

θK : K× → Gal(Kab/K)

such that, for every finite extension L/K in Kab, the homomorphism θL/K : K× → Gal(L/K)

given by composing θK with the restriction map Gal(Kab/K)� Gal(L/K) is surjective with kernel
NL/K(L×) and, for K nonarchimedean and L/K unramified, θL/K(π) = FrobL/K for every uni-

formizer π of OK . Equivalently, θ−1
K (FrobK) generates the maximal ideal of OKunr. Moreover, θK

induces an isomorphism

θ̂K : K̂× → Gal(Kab/K)

for K̂× the profinite completion of K×.

As an abuse of notation, we often identify θL/K with the isomorphism it induces by the First
Isomorphism Theorem. The case of K archimedean is easy to dispense with, so we assume K is
nonarchimedean. Our strategy will be to use Tate cohomology theory to explicitly construct the
isomorphism K×/NL/K(L×)

∼−→ Gal(L/K) induced by θL/K for L/K a finite extension contained
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in Kab. This isomorphism will be functorial in L, allowing us to construct θK by using the fact
that

Gal(Kab/K) ∼= lim←−Gal(L/K),

where L/K ranges over the inverse system of finite extensions contained in Kab (with maps given
by restriction).

The Invariant Map

We will construct θL/K by building its inverse, a task which requires some machinery. Let L/K
be an unramified G-Galois extension of a nonarchimedean local field K (we will consider general
separable extensions later). Let v be the valuation on L extending the (normalized) valuation on
K and take Z to be a trivial hence discrete G-module. Then, we have an exact sequence

1 O×L L× Z 0v

of abelian groups which is in fact an exact sequence of G-modules since v is constant on Galois
orbits. Let π be a uniformizer for K. Since L/K is unramified, we may also take π to be a
uniformizer for L. The map 1 7→ π extends to a Z-linear map f : Z→ L× which is G-linear since,
given σ ∈ G, σ fixes K pointwise and so

σ · f(1) = σ(π) = π = f(1) = f(σ(1)) = f(σ · 1).

The map f is then by construction a G-linear right section of the above short exact sequence
and so the above short exact sequence splits, yielding a non-canonical G-module isomorphism
L× ∼= O×L ⊕ Z. This is great for a very important reason:

Lemma. Let L/K be an unramified G-Galois extension of nonarchimedean local fields. Then,
Hn(G,O×L ) = 0 for every n > 0. Moreover, if L/K is finite, then O×L is (Tate) cohomologically

trivial – i.e., Ĥn(H,O×L ) = 0 for every H ≤ G and n ∈ Z.

Proof. Suppose that we have shown the result for L/K finite and let L/K be arbitrary. Given
N ≤ G open, LN/K is a finite unramified extension with Gal(LN/K) ∼= G/N .5 Since Tate
cohomology agrees with group cohomology for a finite group in positive degree,

H•(G,O×L ) = colim−−−→H•(G/N, (O×L )N ) ∼= colim−−−→H•(Gal(LN/K),O×
LN

) = 0,

where the colimits are taken over N E G open. We now show the result for L/K finite. We
have Ĥ•(G,L×) ∼= Ĥ•(G,O×L )⊕ Ĥ•(G,Z).6 Since G is cyclic, the corresponding Tate cohomology
is 2-periodic and so it suffices to look at degree 0 and degree 1. Hilbert’s Theorem 90 gives
Ĥ1(G,L×) = 0 and hence Ĥ1(G,O×L ) = 0. At the same time, Ĥ0(G,Z) = Z/[L : K]Z and

so Ĥ0(G,L×) = K×/NL/K(L×) contains a cyclic subgroup of order [L : K]. This subgroup is
everything since

|Ĥ0(G,L×)| = |K× : NL/K(L×)| ≤ |K× : NL/K(K×)| = |K× : (K×)[L:K]| = [L : K]

and so Ĥ0(G,O×L ) = 0. Hence, Ĥ•(G,O×L ) = 0. Given H ≤ G, the Fundamental Theorem of Galois

Theory gives H = Gal(L/LH) and we obtain Ĥ•(H,O×L ) = 0 by applying the above argument to
the finite unramified extension L/LH .

5Note that a subgroup of a profinite group is open if and only if it is closed with finite index. This is perhaps not
so surprising if you are familiar with infinite Galois theory.

6This property of Tate cohomology is basically a consequence of the fact that Ext and Tor are additive functors.
In fact, Tate cohomology may be viewed as an Ext functor for the appropriate module.
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Remark. We showed on Monday that, for L/K a finite separable extension of nonarchimedean
local fields, NL/K(O×L ) ⊆ O×K . An immediate consequence of the above is that NL/K(O×L ) = O×K in
the case of L/K unramified. The above proof also provides a sanity check for local Artin reciprocity
since, for L/K a finite unramified extension of local fields, Gal(L/K) and

Ĥ0(Gal(L/K), L×) = K×/NL/K(L×)

are both cyclic of order [L : K] and so are (non-canonically) isomorphic.

By the lemma, looking at the long exact sequence induced by the above short exact sequence
yields an exact sequence

0 = H2(G,O×L ) H2(G,L×) H2(G,Z) H3(G,O×L ) = 0v

and so v : H2(G,L×)
∼−→ H2(G,Z) is an isomorphism. Now, consider the following short exact

sequence of trivial hence discrete G-modules:

0 Z Q Q/Z 0

Once again, a lemma illustrates the importance of a given short exact sequence.

Lemma. Let G be a profinite group acting trivially on Q. Then, Hn(G,Q) = 0 for every n > 0.

Proof. Fix n > 0. We have
Hn(G,Q) = colim−−−→Hn(G/N,Q)

with the colimit taken over N E G open and so it suffices to prove the result for G finite. Mul-
tiplication by |G| is an automorphism of Q and so induces an automorphism of Ĥn(G,Q) which
is also multiplication by |G|. We therefore have Ĥn(G,Q) = 0 since Ĥn(G,Q) is |G|-torsion. The
result follows since Tate and group cohomology agree for a finite group in positive degree.

By the lemma, looking at the long exact sequence induced by the above short exact sequence
yields an exact sequence

0 = H1(G,Q) H1(G,Q/Z) H2(G,Z) H2(G,Q) = 0δ

where δ is the connecting homomorphism induced by the snake lemma. This prompts the following
definition:

Definition. Let L/K be an unramified G-Galois extension of a nonarchimedean local field K. The
invariant map invL/K : H2(L/K)→ Q/Z is defined to be the composition

H2(L/K) H2(G,Z) H1(G,Q/Z) Q/Zv δ−1 f 7→f(FrobL/K)

where we interpret H1(G,Q/Z) as the Pontryagin dual G∨ := Homcont(G,Q/Z) of continuous
group homomorphisms G→ Q/Z.7

7This follows since crossed homomorphisms are the same as homomorphisms in this case. The topology on Q/Z
is the quotient topology induced by the standard topology on Q.
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Lemma. Under the same hypotheses as in the above definition, invL/K is an injective homomor-

phism, with image
1

[L : K]
Z/Z for L/K finite.

Proof. We begin by showing that f 7→ f(FrobL/K) and hence invL/K is injective. Suppose first that
L/K is finite. Then, G is cyclic of order [L : K] with generator FrobL/K and so f 7→ f(FrobL/K)
is injective since f ∈ G∨ is then uniquely determined by its value at FrobL/K . Suppose now that
L/K is infinite. Then, FrobL/K is defined by

FrobL/K |E = FrobE/K

for every E/K finite contained in L. Let f, g ∈ G∨ such that f, g agree on FrobL/K . Then, the
above argument gives that

f |Gal(E/K) = g|Gal(E/K)

for every E/K finite contained in L. Continuity of f, g and the fact that

Gal(L/K) ∼= lim←−Gal(E/K)

then give f = g. Hence, f 7→ f(FrobL/K) is injective.
To see that invL/K has the claimed image in the case of L/K finite, first note that the map

FrobL/K 7→ 1/[L : K] defines an element of G∨ and so invL/K contains
1

[L : K]
Z/Z in its image.

This must be the entire image of invL/K since both
1

[L : K]
Z/Z and

H2(Gal(L/K), L×) ∼= Ĥ0(Gal(L/K), L×)

have order [L : K].

Moreover, the functoriality of inflation and the maps used to define the invariant map gives a
commutative diagram

H2(E/K) Q/Z

H2(L/K) Q/Z

invE/K

Inf

invL/K

for K a nonarchimedean local field and K ⊆ E ⊆ L such that L/K is unramified (which automat-
ically gives that E/K is unramified).

Theorem. Let K be a nonarchimedean local field. Then, there exists a unique isomorphism

invK : H2(Kunr/K)
∼−→ Q/Z

such that, for every finite extension L/K contained in Kunr, composition with inflation

Inf : H2(L/K)→ H2(Kunr/K)

induces invL/K .
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Proof. Take invK := invKunr/K . The above comments show this map behaves as desired. Unique-
ness follows from a little bit of Galois theory.

Definition. As the above theorem suggests, we have reason to study

Br(K) := H2(Ksep/K),

Brunr(K) := H2(Kunr/K)

for a field K. The former is called the (cohomological) Brauer group of K and appears in
many different applications outside of class field theory.

Remark. The notation Brunr(K) is our own. Though this may seem like a separate notion, we
will see shortly that Brunr(K) ∼= Br(K) canonically for K a local field.

Theorem. Let L/K be a finite separable extension of nonarchimedean local fields. Then, there
exists a canonical homomorphism ψ : Brunr(K) → Brunr(L) such that we have a commutative
diagram

Brunr(K) Brunr(L)

Q/Z Q/Z

ψ

invK invL

[L:K]

where the bottom map is multiplication by [L : K]. Moreover, if L/K is Galois then kerψ can be
canonically identified as a cyclic subgroup of H2(L/K) of order [L : K].

Proof. Note first of all that Lunr = LKunr since maximal unramified extensions of local fields are
obtained by adjoining suitable roots of unity that depend only on the characteristic of the residue
field. One consequence of this is that Lunr/K is Galois provided that L/K is Galois. Let p be the
unique maximal ideal of OK with associated normalized discrete valuation vK . Let q be the unique
maximal ideal of OL lying above p with associated normalized discrete valuation vL. Let e and f
be the ramification degree and inertia degree of q, respectively. Then, vL extends vK with index
e, [L : K] = ef , and

FrobL |Kunr = FrobfK .

Hence, Gal(Kunr/K) has index e in Gal(Lunr/L). Moreover, vK and vL extend (by lifting uni-
formizers) to give a commutative diagram

Kunr,× Z

Lunr,× Z

vK

[e]

vL

where the righthand vertical map is multiplication by e. Let Res : H2(Lunr/K) → Brunr(L)
and Inf ′ : Brunr(K) → H2(Lunr/K) be the appropriate restriction and inflation maps. Define
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ψ := Res ◦ Inf ′. Given g ∈ Gal(Kunr/K)∨, we have

([e] ◦ ψ)(g)(FrobL) = eψ(g)(FrobL)

= eg(FrobfK)

= efg(FrobK)

= [L : K]g(FrobK).

Putting everything together therefore gives a commutative diagram

Brunr(K) H2(Gal(Kunr/K),Z) H1(Gal(Kunr/K),Q/Z) Q/Z

Brunr(L) H2(Gal(Lunr/L),Z) H1(Gal(Lunr/L),Q/Z) Q/Z

vK

ψ

δ−1

[e]◦ψ

g 7→g(FrobK)

[e]◦ψ [L:K]

vL δ−1 g 7→g(FrobL)

and hence a commutative diagram

Brunr(K) Brunr(L)

Q/Z Q/Z

ψ

invK invL

[L:K]

Thus, kerψ ∼=
1

[L : K]
Z/Z is cyclic of order [L : K]. Suppose now that L/K is Galois. Then,

applying Hilbert’s Theorem 90 gives us short exact inflation-restriction sequences

0 H2(L/K) H2(Lunr/K) Brunr(L) 0Inf Res

and

0 Brunr(K) H2(Lunr/K) H2(Lunr/Kunr) 0Inf′ Res′

and hence a commutative diagram

0 kerψ Brunr(K) Brunr(L)

0 H2(L/K) H2(Lunr/K) Brunr(L)

ϕ

ψ

Inf′

Inf Res

defining ϕ as an injective homomorphism. It follows that H2(L/K) contains a cyclic subgroup of
order [L : K].

Corollary. Let L/K be a finite G-Galois extension of nonarchimedean local fields. Then, H2(L/K)
is cyclic of order [L : K].

Proof. H2(L/K) contains a cyclic subgroup of order [L : K] by the previous theorem and so it
suffices to show that |H2(L/K)| ≤ [L : K]. Suppose first that G is cyclic. We take as given that O×L
contains a cohomologically trivial G-submodule A of finite index.8 Letting h denote the Herbrand
quotient, the short exact sequence

8This follows from the Normal Basis Theorem and a fairly straightforward bootstrapping argument.
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1 A O×L O×L/A 1

gives h(O×L ) = h(A)h(O×L/A) = 1 since A is cohomologically trivial and O×L/A is finite. The short
exact sequence

1 O×L L× Z 0v

then gives

|H2(L/K)| = |Ĥ0(G,L×)| = |Ĥ
0(G,L×)|

|Ĥ1(G,L×)|
= h(L×) = h(O×L )h(Z) = [L : K]

where we have implicitly invoked Hilbert’s Theorem 90 and the 2-periodicity of Tate cohomology
for cyclic groups.

Now, drop the assumption that G is cyclic. G is a p-group hence solvable, where p is the
characteristic of the residue field of K.9 Hence, G admits a composition series

1 = G0 E G1 E · · · E Gn = G

all of whose successive quotients are cyclic p-groups. The goal now is to induct on both the length
n and the order of G. The base case is handled above. For the inductive step, it suffices by the
Fundamental Theorem of Galois Theory to consider K ( E ( L with E/K Galois. Then, by
Hilbert’s Theorem 90 we have a short exact sequence

0 H2(E/K) H2(L/K) H2(L/E)Inf Res

[E : K], [L : E] are both strictly smaller than [L : K] and so the inductive hypothesis gives that
|H2(E/K)| ≤ [E : K] and |H2(L/E)| ≤ [L : E]. Hence,

|H2(L/K)| ≤ |H2(E/K)||H2(L/E)| ≤ [E : K][L : E] = [L : K]

and so we have our result.

Remark. The above proof along with the proof of the previous theorem actually shows something
stronger than the statement of the corollary, namely that there exists a generator γ ∈ H2(L/K)
with order [L : K] such that, for every H ≤ G, H2(H,L×) is generated by Res(γ).

Corollary. Let K be a nonarchimedean local field. Then, the canonical map

Inf : Brunr(K)→ Br(K)

is an isomorphism. There exists a unique isomorphism

invK : Br(K)
∼−→ Q/Z

such that, for every finite extension L/K contained in Ksep, composition with inflation

Inf : H2(L/K)→ Br(K)

induces invL/K : H2(L/K)
∼−→ 1

[L : K]
Z/Z extending the invariant map in the unramified case.

Moreover, we have a commutative diagram

9If G is a finite p-group then it has a nontrivial center. This allows us to do an inductive argument to build
a suitable composition series for G. That G = Gal(L/K) is a p-group for L/K a finite separable extension of
nonarchimedean local fields and suitable p follows from looking at the ramification filtration of G.
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Brunr(K) Brunr(L)

Q/Z Q/Z

ψ

invK invL

[L:K]

and if L/K is also Galois then

0 H2(L/K) Br(K) Br(L) 0

0
1

[L : K]
Z/Z Q/Z Q/Z 0

Inf

invL/K

Res

invK invL

[L:K]

is an isomorphism of exact sequences.

Proof. Most of the results follow from work we have done already. Given L/K finite Galois, we
have ϕ : kerψ

∼−→ H2(L/K) canonically and so H2(L/K) is identified as a subgroup of Brunr(K)
in a functorial manner. We already know that the inflation maps H2(L/K)→ Br(K) are injective
and so, since Br(K) and Brunr(K) are both expressible as colimits over directed systems with
morphisms given by inflation, it follows that Inf : Brunr(K) → Br(K) is an isomorphism. Thus,
given L/K finite separable, we may replace Kunr and Lunr in the previous theorem with Ksep and
Lsep = Ksep, respectively. Then, ψ = Res as defined in the proof of the previous theorem and we
obtain the desired commutative diagrams.

Proof of Main Part of Local Artin Reciprocity

Definition. Let L/K be a finite G-Galois extension of nonarchimedean local fields. Then, the
fundamental class of L/K is uL/K := inv−1

L/K(1/[L : K]).

Fundamental classes will soon play a very important role. First, though, recall the basics of
cup products and the statement of Tate’s Theorem.

Definition. Let G be a finite group. A cup product on G is a family of Z-linear homomorphisms

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗B)

a⊗ b 7→ a ^ b

for p, q ∈ Z and G-modules A,B10 that is

(i) functorial in A,B;

(ii) induced by the natural product AG ⊗BG → (A⊗B)G for p = 0 = q;

(iii) “well-behaved” with respect to short exact sequences.

Moreover, for all p, q, r ∈ Z, G-modules A,B,C, a ∈ Ĥp(G,A), b ∈ Ĥq(G,B), c ∈ Ĥr(G,C), and
H ≤ G,

10Note that A⊗B is the G-module whose underlying abelian group is A⊗Z B equipped with a diagonal action of
G – i.e., g · (a⊗ b) = ga⊗ gb for g ∈ G, a ∈ A, b ∈ B.
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(i) (a ^ b) ^ c = a ^ (b ^ c) via the natural isomorphism (A⊗B)⊗ C ∼= A⊗ (B ⊗ C);

(ii) a ^ b = (−1)pqb ^ a via the natural isomorphism A⊗B ∼= B ⊗A;

(iii) Res(a ^ b) = Res(a) ^ Res(b);

(iv) CoRes(a ^ Res(b)) = CoRes(a) ^ b,

where Res = ResGH and CoRes = CoResGH .

Proposition. Let G be a finite group. Then, there exists a unique cup product on G.11

Theorem (Tate-Nakayama). Let G be a finite group and A a G-module such that H2(G,A) is
cyclic with generator γ and, for every H ≤ G, H1(H,A) = 0 and H2(H,A) is cyclic of order |H|
generated by Res(γ).12 Then, for every n ∈ Z, the map

Φγ : Ĥn(G,Z)→ Ĥn+2(G,A)

given by taking the cup product with γ is an isomorphism compatible with restriction and co-
restriction in the sense that, given any H ≤ G and n ∈ Z, we have commutative diagrams

Ĥn(G,Z) Ĥn+2(G,A)

Ĥn(H,Z) Ĥn+2(H,A)

Φγ

Res Res

ΦRes(γ)

and

Ĥn(G,Z) Ĥn+2(G,A)

Ĥn(H,Z) Ĥn+2(H,A)

Φγ

ΦRes(γ)

CoRes CoRes

Corollary. Let L/K be a finite G-Galois extension of nonarchimedean local fields. Then, for every
n ∈ Z, the map

ΦL/K : Ĥn(G,Z)→ Ĥn+2(G,L×)

given by taking the cup product with uL/K is an isomorphism compatible with restriction and co-
restriction.

Let L/K be a finite G-Galois extension of nonarchimedean local fields. θL/K is defined as the
inverse of the composition

Gab H1(G,Z) = Ĥ−2(G,Z) Ĥ0(G,L×) = K×/NL/K(L×)∼ ΦL/K

where ΦL/K is the isomorphism provided by the above corollary.

Lemma. Let K ⊆ E ⊆ L be a tower of finite Galois extensions of nonarchimedean local fields.
Then, we have commutative diagrams

11Uniqueness here means up to natural equivalence.
12It in fact suffices that these results hold for at least one p-Sylow subgroup of G for every prime p dividing |G|.
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E× Gal(L/E)ab

K× Gal(L/K)ab

θL/E

NE/K

θL/K

and

K× Gal(L/K)ab

K× Gal(E/K)ab

θL/K

θE/K

where the unmarked vertical lefthand and righthand maps are inclusion and restriction maps, re-
spectively.

Proof. Let Res : H2(L/K) → H2(L/E) and CoRes : H2(L/E) → H2(L/K) be the appropriate
restriction and co-restriction maps. One can show that

(i) uE/K = [L : E]uL/K ;

(ii) Res(uL/K) = uL/E ;

(iii) CoRes(uL/E) = [E : K]uL/K .

The result then follows from the explicit forumlas for restriction and co-restriction and the com-
patibility of the Tate isomorphism with restriction and co-restriction.

Thus, {θL/K} for L/K finite abelian forms a compatible system giving rise to the desired con-

tinuous local Artin map θK : K× → Gal(Kab/K) via θK |L = θL/K .13 That θK sends uniformizers
to Frobenius elements follows from a very careful bookkeeping argument. In fact, careful account-
ing shows that the standard filtration of O×K maps isomorphically onto the ramification filtration
of Gal(Kab/K).14

The Existence Theorem

We know from above that the local Artin map θK : K× → Gal(Kab/K) “plays nice” with respect
to finite extensions L/K contained in Kab in the sense that the local Artin homomorphism

θL/K : K×/NL/K(L×)
∼−→ Gal(L/K)

is functorial in L. It follows that the local Artin homomorphisms induce an isomorphism

lim←−K
×/NL/K(L×) ∼= lim←−Gal(L/K) ∼= Gal(Kab/K),

where the inverse limits are taken over finite extensions L/K contained in Kab.

Definition. Let K be a field. Then, Γ ≤ K× is a norm subgroup if there exists a finite Galois
extension L/K such that Γ = NL/K(L×).

To prove the statement about profinite completion, it suffices to prove the following.

Theorem (Existence Theorem). Let K be a nonarchimedean local field and Γ ≤ K×. Then, Γ is
a norm group if and only if it is open with finite index (equivalently, closed with finite index).

13Continuity of θK follows from the continuity of each θL/K and the profinite nature of the topology on Gal(Kab/K).
14We have not explained ramification filtrations and so we do not give a precise formulation of this statement.
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For the sake of convenience, we assume charK = 0 with unique maximal ideal p. This assump-
tion allows us to take an approach along the lines of Kummer theory.

Lemma. Let Γ ≤ Γ′ ≤ K× with Γ finite index open. Then, Γ′ is finite index open.

Proof. The result follows from |K× : Γ′| ≤ |K× : Γ| < ∞ and the fact that U ⊆ K× is an open
neighborhood of 1 if and only if it contains 1 + pm for m� 0.

Lemma. Let n > 0. Then, (K×)n is a finite index open subgroup of K×.

This proves the forward direction of the Existence Theorem since, given L/K a finite abelian
extension of nonarchimedean local fields, NL/K(L×) ⊇ NL/K(K×) = (K×)[L:K].

Lemma. Let Γ ≤ Γ′ ≤ K× with Γ a norm subgroup. Then, Γ′ is a norm subgroup.

Proof. By assumption, there exists L/K finite abelian such that Γ = NL/K(L×). We have

Γ′/Γ K×/NL/K(L×) Gal(L/K)
θL/K

where the first map is induced by the inclusion Γ′ ⊆ K× and so there exists K ⊆ E ⊆ L such that
Γ′/Γ ∼= Gal(L/E). It then follows from the commutativity of the diagram

E× Gal(L/E)

K× Gal(L/K)

θL/E

NE/K

θL/K

that Γ′ = NE/K(E×).

Lemma. Let n > 0. Then, (K×)n is a norm subgroup of K×.

Proof. First reduce to the case that K contains the set of nth roots of unity. Second use Kummer
theory to get the result.

TO DO: Elaborate on the first reduction and the Kummer theory details.

Lemma. Let Γ ≤ K× be a finite index open subgroup. Then, Γ contains (K×)n for some n > 0.

This proves the backward direction of the Existence Theorem.
TO DO: Work out some explicit cases of the local Artin map.

References and Further Reading

The main text for these notes is Algebraic Number Theory by Cassels and Fröhlich, with special
emphasis placed on the section on local class field theory written by Serre. Serre’s Local Fields
goes into far more detail on the same material and is recommended by Rok. Andrew Sutherland’s
lecture notes on 18.785 Number Theory I and 18.786 Number Theory II are quite good for learning
algebraic number theory and local class field theory, respectively.15 Oron Propp’s notes on 18.786

15Sutherland’s 18.785 notes from Fall 2017 are more extensive, but the ones from Fall 2015 are better written in
my opinion.
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Number Theory II present a more homotopy theoretic viewpoint of local class field theory. Bjorn
Poonen has some concise and wonderful notes summarizing the statements of local and global class
field theory, while Keith Conrad has some great notes on the history of class field theory. We
have in our treatment neglected to talk about many important things, among them Lubin-Tate
formal groups and class formations. A good reference for the former is Emily Riehl’s undergraduate
thesis, while a good reference for the latter is Local Fields or Class Field Theory by Artin and Tate.
Finally, Romyar Sharifi’s notes on group and Galois cohomology contain a wonderful treatment of
Kummer theory.
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